Association of Finite-Dimension Thermodynamics and a Bond-Graph Approach for Modeling an Irreversible Heat Engine

نویسندگان

  • Yuxiang Dong
  • Amin El-Bakkali
  • Michel Feidt
  • Georges Descombes
  • Christelle Périlhon
چکیده

In recent decades, the approach known as Finite-Dimension Thermodynamics has provided a fruitful theoretical framework for the optimization of heat engines operating between a heat source (at temperature Ths) and a heat sink (at temperature Tcs). We will show in this paper that the approach detailed in a previous paper [1] can be used to analytically model irreversible heat engines (with an additional assumption on the linearity of the heat transfer laws). By defining two dimensionless parameters, the intensity of internal dissipation and heat leakage within a heat engine were quantified. We then established the analogy between an endoreversible heat engine and an irreversible heat engine by using the apparent temperatures (Tcs → T λ,φ cs , Ths → T λ,φ hs ) and apparent conductances (Kh → K λ h , Kc → K λ c ). We thus found the analytical expression of the maximum power of an irreversible heat engine. However, these apparent temperatures should not be used to calculate the conversion efficiency at the optimal operating point by analogy with the case of an endoreversible heat engine. OPEN ACCESS Entropy 2012, 14 1235

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association of Finite-Time Thermodynamics and a Bond-Graph Approach for Modeling an Endoreversible Heat Engine

In recent decades, the approach known as Finite-Time Thermodynamics has provided a fruitful theoretical framework for the optimization of heat engines operating between a heat source (at temperature hs T ) and a heat sink (at temperature cs T ). The aim of this paper is to propose a more complete approach based on the association of Finite-Time Thermodynamics and the Bond-Graph approach for mod...

متن کامل

Modeling of Heat Losses Within Combustion Chamber of Diesel Engines

The cylinder working fluid mean temperature, rate of heat fluxes to combustion chamber and temperature distribution on combustion chamber surface will be calculated in this research. By simulating thermodynamic cycle of engine, temperature distribution of combustion chamber will be calculated by the Crank-Nicolson method. An implicit finite difference method was used in this code. Special treat...

متن کامل

Basis for bond-graph modeling in chemical engineering

The aim of this paper is to briefly present the Bond Graph language and the advantages that one can get from its use. The main point is the easy reusability of the sub-models that are the basis of a given model. The Bond Graph language has been firstly developed for the modeling of finite dimension systems in mechatronic and electrical engineering but it can also be applied to infinite dimensio...

متن کامل

Two Phase Flow Simulation for Subcooled Nucleat Boiling Heat Transfer Calculation in Water Jacket of Diesel Engine

Basic understanding of the process of coolant heat transfer inside an engine is an indispensable prerequisite to devise an infallible cooling strategy. Coolant flow and its heat transfer affect the cooling efficiency, thermal load of heated components, and thermal efficiency of a diesel engine. An efficient approach to studying cooling system for diesel engine is a 3D computational fluid dynami...

متن کامل

Mathematical Modeling and Numerical Investigation of Heat Flux at the External Surface of Cylinder of an Internal Combustion Engine

 Abstract: This study deals with modeling of heat flux at the external surface of combustion chamber wall in an internal combustion (IC) engine as a function of crank angle. This investigation results in an inverse heat conduction problem in the cylinder wall. Alifanov regularization method is used for solving this inverse problem. This problem study as an optimization problem in which a square...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2012